

Hot Chili Limited ACN 130 955 725

First Floor, 768 Canning Highway, Applecross, Western Australia 6153 PO Box 1725, Applecross, 6953, Western Australia

P: +61 8 9315 9009 **F:** +61 8 9315 5004

ASX ANNOUNCEMENT

Thursday 5th September 2013

More strong results extend highgrade copper and gold zone ahead of next major resource upgrade

- Latest drilling at Productora Copper Project in Chile extends a new zone of shallow, high-grade copper and gold
- First drilling to target identified extensions to Productora Underground (UG) mine to start shortly
- Substantial grade and tonnage being targeted in the northern extent of planned central pit development at Productora
- Second major resource upgrade set for late calendar 2013

New Drill Results at Productora

49m grading 1.3% Copper Equivalent*

(1.0% copper, 0.1g/t gold, 207ppm molybdenum)

from 89m down-hole New High Grade Zone, east of Productora UG mine

76m grading 0.9% Copper Equivalent*

(**0.6% copper**, 0.1g/t gold, 233ppm molybdenum)

from 108m down-hole

including 19m grading 1.7% Copper Equivalent* (1.2% copper, 0.3g/t gold and 323ppm molybdenum)

50m grading 1.0% Copper Equivalent*

(0.7% copper, 0.2g/t gold, 235ppm molybdenum)

from 191m down-hole

including 24m grading 1.4% Copper Equivalent* (1.0% copper, 0.2g/t gold and 368ppm molybdenum)

ASX Code

HCF

Contact

Mr Christian Easterday

M: +61 409 64 1214

www.hotchili.net.au

Hot Chili (ASX: HCH) is pleased to announce that three significant developments, including more high-grade drilling results, have put it firmly on track for a major resource upgrade later this year at its flagship Productora copper project in Chile.

These developments are:

- 1. Fresh drilling results confirm a substantial new zone of high-grade copper and gold from shallow depths;
- 2. Access has been granted for extensional drilling at the Productora underground mine area;
- 3. Regulatory approval has been gained for a further 100 high-priority extensional holes along the eastern flank of the planned central pit development.

Reverse circulation (RC) drilling is progressing well at Productora with approximately 120 holes remaining to be completed in 2013.

New Zone of High-Grade Copper and Gold

Recent drilling at Productora has returned 49m grading 1% copper and 0.1g/t gold from 89m down-hole. This significant intersection is the latest from the eastern flank of the planned central pit development at Productora.

Importantly, this newly discovered zone was previously treated as waste in the Productora scoping study. A total of five significant intersections have now been returned from this new zone across 100m of strike length, including:

- 67m grading 0.7% copper and 0.2g/t gold from 74m down-hole depth (PRP0077)
- 64m grading 1.5% copper and 0.4g/t gold from 122m down-hole depth (PRP0545)
- 72m grading 0.7% copper from 120m down-hole depth (PRP0609)
- 102m grading 1.0% copper and 0.2g/t gold from 124m down-hole depth (PRP0611)
- 49m grading 1.0% copper and 0.1g/t down-hole depth (PRP0661)

Drilling is now targeting the new zone to determine its potential extent and impact on the planned central pit development, which may be substantial given the tenor of copper and gold grades being recorded in these recent holes.

Drill-Testing of Productora Underground Mine Extensions Commences

In another boost for the forthcoming major resource upgrade at Productora, the UG mine area is now accessible for extensional drilling assessment.

Previously, this area was not able to be drilled owing to the operations of a lease mining contractor. The mining contractor has now ceased mining operations and removed equipment following purchase of the central lease by Hot Chili earlier this year and termination of their lease mining agreement.

Drilling is scheduled to start in this area in the coming week. One drill hole has already been completed to assess the immediate depth extension below the depth of development (120m vertical depth) and has encountered visually encouraging chalcopyrite and pyrite mineralisation over a large width immediately below the underground development. Results are expected in the coming weeks.

Regulatory Approval Granted for Remaining Eastern Flank Drilling

The Company has received approval to complete a further 100 drill holes over a large area across the eastern flank of the planned central pit development at Productora. The approval will facilitate the last of Hot Chili's major 100,000m drilling programme at Productora for 2013.

The area to be assessed represents a large opportunity for the Company to follow-up on a very successful extensional drilling programme which has delivered a strong run of results along the eastern flanks of Productora. This drilling is being prioritised in a bid to deliver new resources from areas considered to be waste in the Company's scoping study. This represents an opportunity to significantly enhance the size and economics of the centre piece of the Productora development plan.

Results from the Company's recently completed diamond drilling programme at Productora are expected shortly.

For more information please contact:

Christian Easterday +61 8 9021 3033

Managing Director Email: christian@hotchili.net.au

or visit Hot Chili's website at www.hotchili.net.au

3

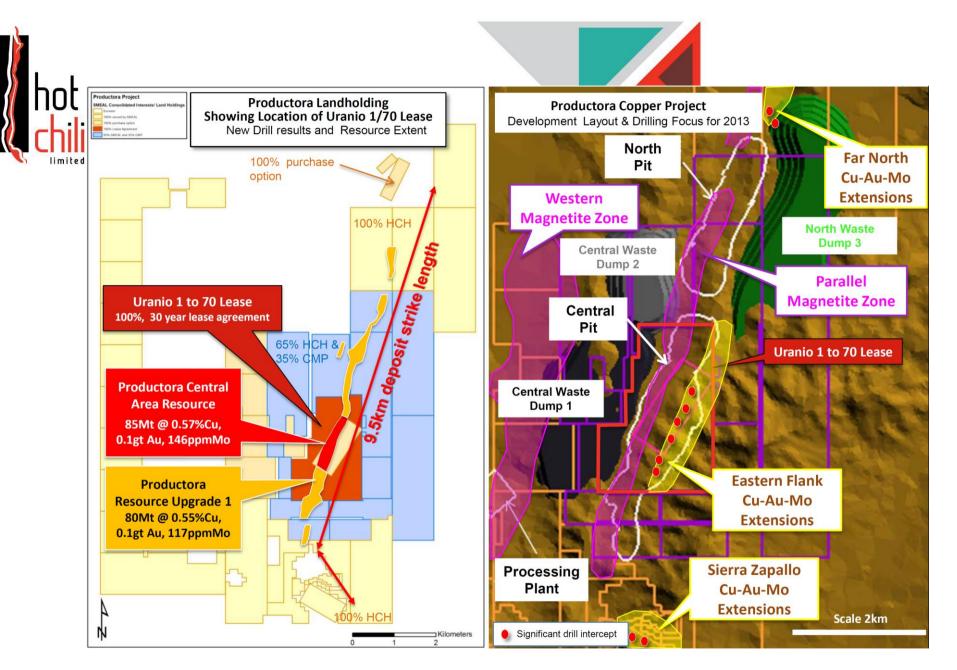


Figure 1. Productora project and Scoping Study development layout in relation to 2013 drilling programme focus

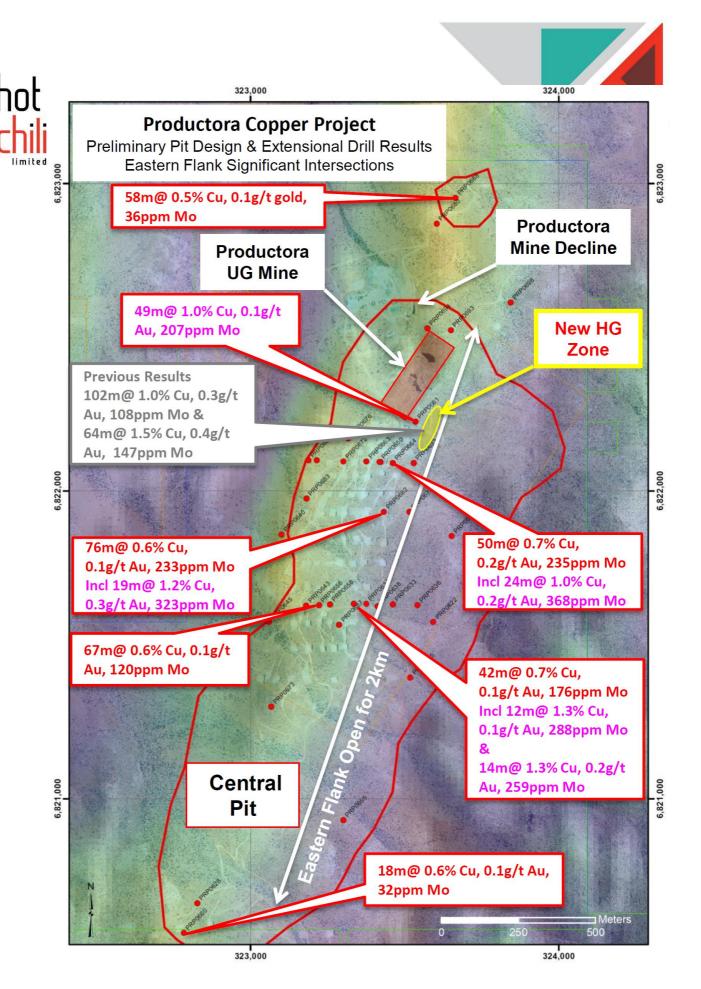


Figure 2. New significant drilling intersections in relation to the planned central pit design at Productora

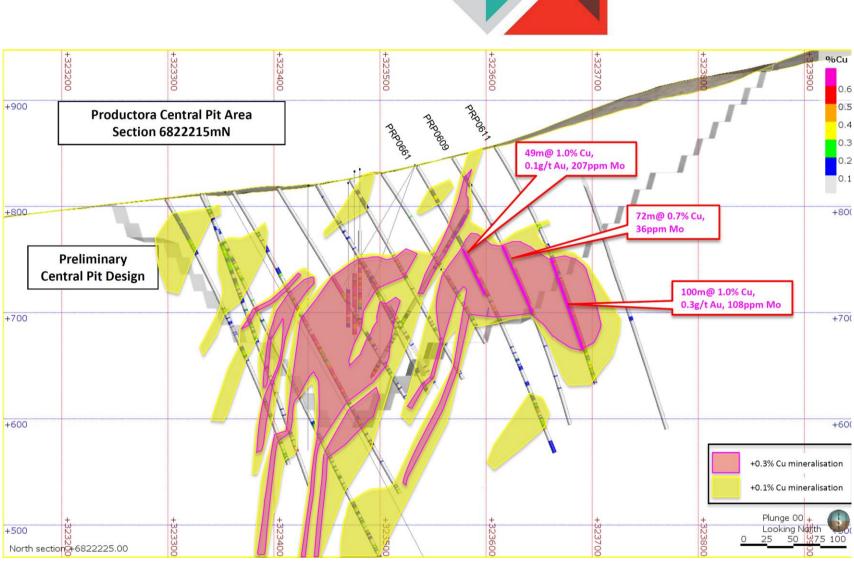
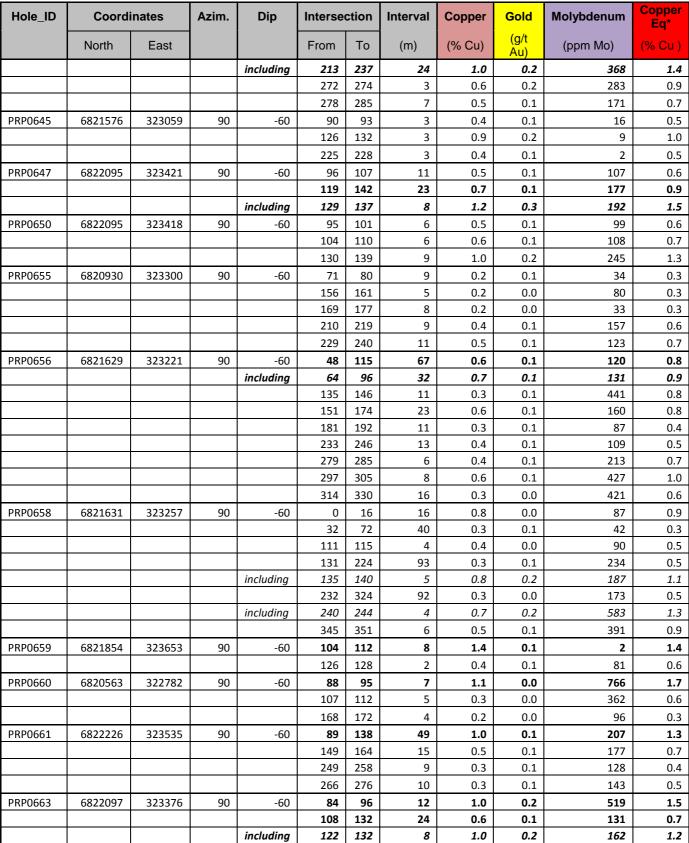
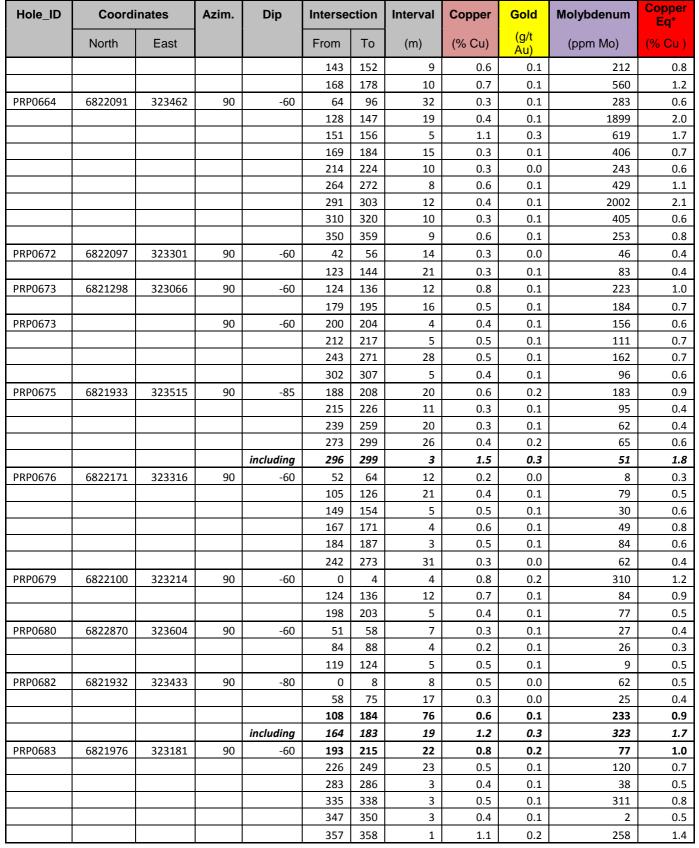


Figure 3. Cross sections showing significant intersections being recorded in new high-grade zone on eastern flank of planned central pit development- Section 6822215mN




Productora Project- New Significant Drilling Intersections

Hole_ID	Coordi	nates	Azim.	Dip	Intersection		Interval	Copper Gold		Molybdenum	Copper Eq*
	North	East			From	То	(m)	(% Cu)	(g/t Au)	(ppm Mo)	(% Cu)
PRP0622	6821574	323593	90	-60	36	40	4	0.5	0.1	67	0.6
					48	51	3	0.9	0.3	247	1.3
PRP0625	6821394	323518	90	-60	48	52	8	0.3	0.1	134	0.5
					241	245	4	0.6	0.1	205	0.9
PRP0628	6820659	322826	90	-60	52	64	12	0.4	0.0	127	0.5
					93	138	45	0.4	0.1	130	0.6
					143	150	7	0.3	0.0	16	0.3
					155	173	18	0.6	0.1	32	0.7
PRP0632	6822091	323529	90	-60	117	135	18	0.5	0.1	54	0.6
					141	148	7	0.3	0.1	59	0.4
				in alvedia	168	206	38	0.3	0.1	53	0.5
DDDOC33	6024622	222462	00	including	168	174	6	0.8	0.2	77	1.0
PRP0633	6821632	323462	90	-60	79 84	97 88	18 4	0.4	0.1	81 141	0.5
					163	167	4	0.7	0.1	21	0.9
					204	211	7	0.7	0.1	165	0.9
					216	220	4	0.4	0.1	60	0.5
PRP0634	6821634	323375	90	-60	139	150	11	0.3	0.1	235	0.5
1111 0034	0021034	323373	30		190	193	3	0.5	0.1	252	0.7
PRP0636	6821629	323542	90	-60	222	226	4	0.3	0.0	2	0.3
1111 0000	0021025	5255.2	30		247	251	4	0.9	0.2	271	1.3
PRP0638	6821625	323412	90	-60	28	40	12	0.5	0.1	84	0.6
					69	81	12	0.7	0.2	663	1.3
					92	95	3	0.8	0.2	322	1.2
					138	143	5	0.8	0.2	182	1.1
					191	196	5	0.5	0.2	115	0.8
					227	232	5	0.3	0.0	299	0.5
					262	268	6	0.4	0.1	267	0.7
PRP0639	6821634	323335	90	-60	64	106	42	0.7	0.1	176	0.9
				including	76	88	12	1.3	0.1	288	1.7
					191	205	14	1.3	0.2	259	1.6
				including	191	199	6	2.0	0.3	312	2.4
					297	308	11	0.4	0.0	152	0.5
DDD0640	6024050	222400	00	60	316	322	6	0.4	0.0	131	0.5
PRP0640	6821859	323100	90	-60	183	186	3	0.4	0.1	226	0.6
DDDOCAS	6034637	222400			233	236	3	0.4	0.2	2	0.5
PRP0643	6821627	323180	90	-60	84	90	6	0.6	0.1	78 61	0.7
					96 189	99 199	3 10	0.4	0.1	61	0.5
						209		0.4	0.1	76	0.5
DDDOC44	6822091	222462	00	60	206		3		0.1	11	0.6
PRP0644	0822091	323462	90	-60	106	110	4	0.6	0.2	140	0.8
					129 165	137 184	8 19	0.4	0.1	24 205	0.5 1.0
					191	241	50	0.7	0.2	205	1.0

Hole_ID	Coordi	nates	Azim.	Dip	Intersection		Interval	Copper	Gold	Molybdenum	Copper Eq*
	North	East			From	То	(m)	(% Cu)	(g/t Au)	(ppm Mo)	(% Cu)
PRP0684	6822100	323187	90	-60	0	8	8	0.7	0.1	247	1.0
					152	177	25	0.3	0.1	89	0.4
PRP0687	6821565	323287	90	-60	16	27	11	0.5	0.1	23	0.6
					48	84	36	0.4	0.0	62	0.4
					100	127	27	0.3	0.0	94	0.4
					147	150	3	0.5	0.1	90	0.7
					154	162	8	0.6	0.1	181	0.8
					270	301	31	0.4	0.1	256	0.6
					328	353	25	0.4	0.1	222	0.7
					354	362	8	0.2	0.1	109	0.3
					385	401	16	0.8	0.1	380	1.2
					408	411	3	0.4	0.1	415	0.8
					418	441	23	0.5	0.1	271	0.8
PRP0688	6822954	323665	90	-60	79	83	4	0.5	0.1	76	0.7
					89	147	58	0.5	0.1	60	0.6
PRP0693	6822523	323650	180	-60	56	64	8	0.6	0.1	28	0.6
					199	204	5	0.3	0.1	84	0.5
					221	234	13	0.2	0.1	227	0.5
					244	256	12	0.2	0.1	43	0.3
PRP0694	6822530	323573	180	-60	139	156	17	0.6	0.2	381	1.1
					166	181	15	0.5	0.2	359	0.9
					187	193	6	0.3	0.1	63	0.4
					246	251	5	0.3	0.1	58	0.4
					254	261	7	0.3	0.1	559	0.9
					342	353	11	0.2	0.1	15	0.3
					365	374	9	0.2	0.1	50	0.3
PRP0698	6822614	323844	360	-60	140	148	8	0.6	0.1	86	0.7
					190	195	5	0.5	0.2	33	0.7
					201	204	3	0.7	0.8	9	1.3
					239	246	7	0.3	0.1	108	0.5
					254	261	7	0.6	0.1	139	0.8
			mineralised to EOH		262	302	40	0.3	0.1	65	0.4

Notes to Significant Drilling Intersections

- All drill holes with pre-fix "PRP" are reverse circulation (RC) and all drill holes with suffix "D" are diamond holes.
- Results comprise ICP analysis (ME-ICP61) of all 1m whole core samples (D); 1m selective cone split samples (RC) and 4m composite samples (RC).
- Priority AAS analysis (CU-AA62 ore grade analysis) results were utilised where analysis was undertaken for copper results greater than 1.0%.
- Priority MS analysis (ME-MS61) results were utilised where analysis was undertaken for uranium results greater than 50ppm.
- Gold analysis only undertaken over copper results greater than 0.2%. All gold results comprise ICP analysis (Au-ICP21). Gold significant intersections may in some instances represent the average of gold results within the zone of intersection. In these instances generally gold analysis has been undertaken over 90 percent of the samples taken within the length of the intersection.
- All results were analysed by ALS Chemex (La Serena) laboratories.

* Copper Equivalent Calculation

Copper Equivalent (also Cu Eq*) Calculation represents the total metal value for each metal, multiplied by the conversion factor, summed and expressed in equivalent copper percentage. These results are exploration results only and no allowance is made for recovery losses that may occur should mining eventually result. However it is the Company's opinion that elements considered here have a reasonable potential to be recovered as evidenced in similar multi-commodity natured mines elsewhere in the world. Copper equivalent conversion factors and long-term price assumptions used follow:

Copper Equivalent Formula= Cu % + Mo(ppm)x0.0008 + Au(ppm)x0.6832 Price Assumptions- Cu (US\$1.80/lb), Mo (US\$15/lb), Au (US\$850/oz)

JORC Compliant Resource Statement-Reported 13th February 2013

Classification	Resource Series	Tonnage			Grade		Contained Metal			
	(+0.3% Cu)		Cu	Au	Mo	Cu Eq*	Copper	Gold	Molybdenum	Copper Eq*
			%	g/t	g/t	%	(Tonnes)	(Oz)	(Tonnes)	(Tonnes)
INDICATED	Res Upgrade 1	39,400,000	0.6	0.1	124	0.8	230,000	150,000	5,000	310,000
	Central Resource	31,200,000	0.6	0.1	159	0.8	190,000	110,000	5,000	250,000
	Total	70,600,000	0.6	0.1	140	0.8	420,000	260,000	10,000	560,000
INFERRED	Res Upgrade 1	40,600,000	0.5	0.1	110	0.7	200,000	130,000	4,000	270,000
	Central Resource	54,000,000	0.6	0.1	138	0.7	300,000	180,000	8,000	400,000
	Total	94,600,000	0.5	0.1	126	0.7	500,000	310,000	12,000	670,000
TOTAL	Res Upgrade 1	80,000,000	0.5	0.1	117	0.7	440,000	290,000	9,000	580,000
	Central Resource	85,200,000	0.6	0.1	146	0.8	480,000	290,000	13,000	650,000
	Total	165,200,000	0.6	0.1	132	0.7	920,000	580,000	22,000	1,230,000

Note: Figures in the above table are rounded and are reported to one significant figure in accordance with Australian JORC code 2004 guidance on mineral resource reporting.

Competent Person's Statement

The information in this report that relates to the Central Mineral Resource, Productora is based on information compiled by Alf Gillman, who is a fellow of the Australasian Institute of Mining and Metallurgy. Alf Gillman is a director of Odessa Resources Pty Ltd, and has sufficient experience in mineral resource estimation, which is relevant to the style of mineralisation and type of deposit under consideration. He is qualified as a Competent Person as defined in the 2004 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Alf Gillman consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information in this report that relates to Mineral Resource estimates outside of the Central Mineral Resource is based on information compiled by Aloysius Voortman and Fleur Muller. Aloysius Voortman is a Fellow of the Australasian Institute of Mining and Metallurgy, and Fleur Muller is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Aloysius Voortman is an employee of Coffey Mining, and Fleur Muller is an employee of Hot Chili Ltd, and both have sufficient experience in mineral resource estimation, which is relevant to the style of mineralisation and type of deposit under consideration. Mr Voortman and Mrs Muller are qualified as a Competent Person as defined in the 2004 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Both Mr Voortman and Mrs Muller consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

